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Abstract: A highly accurate reference vehicle state is a requisite for the evaluation and validation
of Autonomous Driving (AD) and Advanced Driver Assistance Systems (ADASs). This highly
accurate vehicle state is usually obtained by means of Inertial Navigation Systems (INSs) that obtain
position, velocity, and Course Over Ground (COG) correction data from Satellite Navigation (SatNav).
However, SatNav is not always available, as is the case of roofed places, such as parking structures,
tunnels, or urban canyons. This leads to a degradation over time of the estimated vehicle state.
In the present paper, a methodology is proposed that consists on the use of a Machine Learning
(ML)-method (Transformer Neural Network—TNN) with the objective of generating highly accurate
velocity correction data from On-Board Diagnostics (OBD) data. The TNN obtains OBD data as input
and measurements from state-of-the-art reference sensors as a learning target. The results show that
the TNN is able to infer the velocity over ground with a Mean Absolute Error (MAE) of 0.167 km

h
(0.046 m

s ) when a database of 3,428,099 OBD measurements is considered. The accuracy decreases to
0.863 km

h (0.24 m
s ) when only 5000 OBD measurements are used. Given that the obtained accuracy

closely resembles that of state-of-the-art reference sensors, it allows INSs to be provided with accurate
velocity correction data. An inference time of less than 40 ms for the generation of new correction
data is achieved, which suggests the possibility of online implementation. This supports a highly
accurate estimation of the vehicle state for the evaluation and validation of AD and ADAS, even in
SatNav-deprived environments.

Keywords: On-Board Diagnostics; Machine Learning; Transformer Neural Network; Autonomous
Driving; ADAS; Inertial Navigation Systems

1. Introduction

AD and ADAS are popular trends in the automotive industry. Both AD and ADAS
can serve to provide driving comfort and fuel efficiency for long-haul trips, motion predic-
tion [1], or occupant protection functions. Whichever the intended use may be, vehicles can
cause serious harm to humans in the case of a malfunction. This leads to the fact that all
vehicle functions that have an effect on the longitudinal or lateral vehicle dynamics have
to be extensively tested. The required AD and ADAS testing in turn demands a highly
accurate vehicle state that serves as a reference for an objective evaluation and validation.

A widely accepted method to generate such a highly accurate vehicle state is the
use of INSs that combine the measurements from inertial sensors with correction data
from SatNav receivers. An advantage of this method is that even consumer-grade SatNav
receivers without correction data are able to deliver acceptable velocity and COG correction
data. Furthermore, the United States Department of Defense supports the continuous
development of the GPS III system by assigning contracts to Space Exploration Technologies
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Corp and Lockheed Martin [2]. This means that new generation SatNav receivers should be
able to improve their positioning accuracy from the current 2–5 m to around 30 cm, which
should enable accurate lane navigation [3].

Even with all the Research and Development (R&D) in the field of SatNav, there are
still situations that represent challenges. For example, consumer-grade SatNav receivers
usually have a 1 Hz update rate, which might not be fast enough for certain automotive
research applications, as could be emergency braking or emergency lane change maneuvers.
A challenge that both consumer-grade and high-end SatNav receivers face is the multipath
effect. This appears when the SatNav signals do not follow a straight path from the satellites
to the receiver but bounce off other objects before. This can happen while driving in urban
canyons, where the SatNav signals bounce off the windows of tall buildings. Another
situation where the multipath effect can arise is while driving next to trailers, where the
metallic containers are prone to reflect the SatNav signals as well. Most SatNav receivers
output a navigation solution that can include the position, velocity over ground, and COG
of the receiver, as well as a degradation metric for the navigation solution, as are the
dilution of precision or the standard deviation. The multipath effect alters the navigation
solution, causing the measured state variables to diverge from the true vehicle state. The
multipath effect further complicates the SatNav by also altering the degradation metric of
the navigation solution. Furthermore, given that this metric is precisely what many sensor
fusion techniques rely on, the multipath effect negatively affects the estimated vehicle
state as well. Even though there are many approaches found in the literature that address
the multipath effect [4–8], these usually require to read the pseudo-ranges of the SatNav
signals. On the contrary, most SatNav receivers do not output pseudo-ranges, but only the
navigation solution.

Another challenge that all SatNav receivers face is the absence of SatNav coverage.
This problem occurs mostly while driving in closed-sky areas, such as tunnels and multi-
story parking structures, but can arise as well while driving on places where the sky is not
completely obstructed, such as tree-flanked roads. The absence of SatNav coverage forces
other fallback solutions to be adopted, such as the Dead-reckoning or the replacement of
the SatNav receiver with other external sensors. The issue of SatNav outage is augmented
in the cases where the outage is intermittent, mainly because the alternating availability of
SatNav reception usually comes with a wrongful estimation of the measured state variables,
which in turn can cause oscillations, jumps, and instability in general with the navigation
solution. Similarly to what happens when the multipath effect is present, the degradation
metric of the navigation solution can be wrongly estimated, which again ends up in an
incorrect estimation of the vehicle state.

Given that road vehicles are equipped with a wide variety of sensors that constantly
monitor the vehicle state, they are interesting candidates for the generation of correction
data for INSs. As their sensors are mounted on the vehicle itself, such as hall sensors on
the wheels, the state variables of the vehicle can be estimated without requiring external
information. Furthermore, even though many research works include test vehicles, most of
them are specially prepared platforms that either have equipped high-end external sensors,
or are built with sensors whose measuring performance is much better than those present
in commercial vehicles. The present research work addresses precisely this point: the
generation of correction data for INSs from OBD data from commercial vehicles for a highly
accurate and robust vehicle state estimation that can serve as a reference for the evaluation
and validation of AD and ADAS.

With regards to the velocity, it should be noted that the cost per part plays an important
role when vehicle manufacturers choose the sensors to install in their vehicles. Even though
a couple of cents per sensor might not sound representative on a first instance, once one
considers the economy of scale and the number of vehicles produced, it does make sense to
consider the sensor price especially when a kilometer-per-hour-accurate sensor perfectly
fulfills consumer expectations and the safety requirements. This leads to the fact that
not every vehicle on the road has exactly the same sensors installed, which means that
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the accuracy of the velocity information obtained from the OBD can vary from vehicle to
vehicle. Even when the error of the OBD velocity could be modeled for a specific vehicle,
it would not be correct to apply this same model to the rest of vehicles. It is also known
that the calibration of the velocity sensors of a vehicle can change over its lifetime, thus
implying different error models for the same vehicle.

Despite their disadvantages, the OBD data are a valuable source of information be-
cause of three key aspects: (1) availability, (2) accessibility, and (3) resources. Regarding
the availability, a great majority of vehicles on the road are compliant with the OBD-II
protocol, which standardizes (among other things) its hardware interface and the infor-
mation transmission. This means that the hardware and algorithms can be developed
generically for all vehicles that comply with the OBD-II standard, instead of vehicle-specific
solutions. As for the accessibility, the OBD-II protocol defines the access to certain vehicle
information. Consequently, the information access is not vehicle-specific either, but also
possible for all vehicles compliant with the OBD-II standard. Finally, both the financial and
human resources play an important role as well. Even though there are high-end sensors in
the market that provide highly accurate velocity information, these imply an important
financial cost. Additionally, as the number of used sensors increases, so does the testing
complexity. This includes the time required for the test preparation as well as the time
needed to evaluate the recorded data. The reasons detailed above strongly support the use
of ML-methods to generate correction data for INSs out of the OBD data, as this addresses
the main challenge: the ability to adapt.

To the best of the authors’ knowledge there is no previous investigation that makes use
of TNNs, OBD data as input to infer velocity over ground data, and that uses state-of-the-art
reference sensors for the training and evaluation of the TNN.

This research work makes the following contributions: (1) proposes an ML-method to
generate highly accurate velocity correction data from real-world OBD data and (2) per-
forms various ablation studies that confirm the robustness of the method against variations
on the database size and of the input sequence length.

The rest of the paper is structured as follows. In Section 2, related works regarding the
use of ML for automotive applications are presented. In Section 3, the research framework,
the dataset generation and processing, and the used ML-model are described. In Section 4,
an evaluation of the results of the proposed methods is shown. In Section 5, a discussion of
the results is presented. The paper is concluded in Section 6.

2. Related Works

As stated above, AD and ADAS have a wide variety of applications. Furthermore,
with the ever growing popularity of ML, the application of ML-methods in the automotive
field has increased as well over the past years. In [9], the authors propose a classifier-based
method for the segmentation of AD maneuvers (parallel- and cross-parking). The authors
generate a training dataset by means of computer simulations and validate their proposed
method with a small-scale autonomous vehicle. This demonstrates that ML-algorithms
can be implemented in resource-limited platforms. Another example of research on ve-
hicle trajectory planning, but for safety critical applications, is shown in [10]. There, the
authors reduce the runtime of trajectory-planning algorithms by replacing certain compu-
tationally intensive modules of the trajectory planners with ML- and analytical methods.
The optimized trajectory planing algorithms are implemented on various hardware plat-
forms so as to compare the runtime. Similar as in [9], the authors of [10] demonstrate that
ML-algorithms can run in real-time, even in resource-limited microcontrollers. Another
research work that uses ML-methods for the estimation of the vehicle state is presented
in [11]. There, the authors train with real data a Random Forest to detect when a vehicle
is standing still. The relevance of this method is that it uses only inertial measurements,
which allow the method to function without external sensors, such as the SatNav or the
OBD data. The standstill detection is relevant because it helps to avoid the divergence of
the estimated vehicle state when the vehicle is not moving. Without such a classifier, the
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continuous integration of the inertial measurements leads to an apparent ever-increasing
velocity over ground, which in turn distorts the rest of the estimated state vector. The
methodology of [11] also deals with the fusion of the inertial signals with vehicle motion
models in order to improve the accuracy of the vehicle state during Dead-reckoning. More
methods that combine mathematical modeling with ML-methods can be found in [12].

One key element that is required from both AD and ADAS in order to plan safe
trajectories is to know where the road is (a) drivable and (b) available. The first refers to the
road infrastructure: lanes and sidewalks, for example. The availability refers to the absence
of obstacles on the drivable road. The authors of [13] deal with both situations. They
propose an ML-method that predicts the availability of the road in the next few seconds of
a given traffic scenario. The input of their algorithm is the current state of a given traffic
scenario and the output is a probabilistic space-time representation of the traffic scenario
termed Predicted Occupancy Grids (POGs). The POGs represent the probability that certain
road grids will be occupied in the next few seconds.

Another examples of the use of ML-methods for safety-critical applications are the
products of MobilEye. These are cameras that can be retro-fitted on the windshield of road
vehicles. The cameras face in the driving direction and are able to detect vehicles and to
output a “Time to collision” that is coupled with acoustic signals to prevent the drivers to
take action. More information about these devices can be found on [14].

Even in in-city situations, road vehicles are allowed to reach velocities of up to 80 km
h

in certain situations [15]. This, combined with the close proximity between vehicles, can
lead to unavoidable traffic accidents. A common practice to estimate the severity of a
vehicle crash by non-destructive means is the use of Finite Element Method (FEM). These
simulations provide a highly accurate depiction of a vehicle crash, including the vehicle
deformation, but their computational cost implies that a single FEM simulation can take
several hours. The authors of [16] propose a Crash Severity Predictor that is trained
with FEM crash simulation data to predict the crash severity distribution of an imminent
collision. The prediction has an accuracy between 85 % and 98 % and is performed in
≈ 0.2 s, which is many orders of magnitude faster than an FEM simulation. An accurate
estimation of the crash severity helps to decide whether the vehicle occupants should be
prepared for an imminent collision (for example, with seat belt pretensioners) and aids as
well to decide if non-reversible safety features should be triggered, as are the airbags.

The research performed in [17] marked a turning point in the field of Natural Language
Processing (NLP) by proposing the “Attention” mechanism and the ML-architecture named
“Transformers”. This work was extended to other fields of application, such as time series or
sequence-to-sequence prediction. In this sense, works such as [18,19] showed the potential
of TNNs in the field of predicting the motion of traffic participants.

The research work that most resembles the methods proposed herein is shown in [20].
There, the authors train an Adaptive Neuro-Fuzzy Inference System (ANFIS) that receives
six inertial measurements as an input—the angular velocities around and the accelerations
along the x, y, and z axes of a consumer-grade Inertial Measurement Unit (IMU)—and
the learning targets are the same inertial measurements but from a high-end IMU. The
authors evaluate the performance of their method by comparing the navigation solution
as estimated with three sources of information: the measurements from the consumer-
grade IMU without ANFIS, the measurements from the consumer-grade IMU with ANFIS,
and the measurements from the high-end IMU. Their results show an improvement of
70% in the 2D positioning and 92% improvement in the velocity estimation, which shows
that consumer-grade sensors can approach the measuring characteristics of their high-
performance counterparts. The main differences between [20] and the present work are
(1) the sensors used, (2) the ML-model applied, (3) the state variable to address, and (4) the
analysis of the possibility for online implementation. With regards to (1), the present
work does not use external sensors (as is the consumer-grade IMU), but only the on-board
sensors of commercial vehicles instead. The difference is relevant because, contrary to
external sensors, the OBD sensors behave like a black box, where the sensor specifications,
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including the update rate, sensor bias, and sensor noise are not known, which complicates,
among other things, the parametrization of sensor fusion algorithms and sensor filters.
With regards to (2), the present work makes use of TNN as the ML-model for the generation
of correction data from OBD data. As reported in [21], the use of ANFIS implies a high
training complexity, is computationally expensive, and poses a challenge for applications
with large datasets. The present work additionally provides several ablation studies using
TNNs. With respect to (3), the present work deals with the generation of velocity correction
data, instead of accelerations and angular velocities. The difference is relevant because, as
shown in [11], by directly generating the velocity correction data, one is able to improve
the accuracy of the navigation solution when compared to the one obtained from the
integration of inertial measurements. Finally, with regards to (4), the present work analyses
as well the possibility of implementing the proposed methods for online processing. This
increases the relevance of the proposed methods, as it better supports future research works
than methods that only work offline. This also provides information about the possibility
of implementing the proposed methods in embedded hardware for real-time applications.

3. Materials and Methods

This section is structured as follows. First, the mathematical preamble and description
of the reference sensors are given in Section 3.1. The data generation and processing are
detailed in Sections 3.2 and 3.3, respectively. Afterwards, the ML-model based on TNN, for
the generation of correction data, is presented in Section 3.4.

3.1. Research Framework

The land vehicles move on the Local Tangent Plane (LTP). This is a Cartesian ref-
erence frame composed of the mutually perpendicular xLTP, yLTP and zLTP axes, with
−−→zLTP = −−→xLTP ×−−→yLTP, and with origin oLTP at an arbitrary location on the surface of the Earth.
The axis orientation of the LTP is similar to the East–North–Up reference frame, where the
xLTP × yLTP plane is perpendicular to the gravitational pull of the Earth, the yLTP axis is
pointing to the true north of the Earth, and the zLTP axis is parallel to the gravitational pull
of the Earth but positive upwards.

The Local Car Plane (LCP) is the vehicle reference frame and is defined analogue to
the ISO 8855:2011 norm [22]. The LCP is composed of the mutually perpendicular xLCP,
yLCP, and zLCP axes, with −−→zLCP = −−→xLCP ×−−→yLCP, and origin oLCP at the Center of sprung
Mass (CoM) of the vehicle. The xLCP axis is parallel to the longitudinal axis of the vehicle
and points towards the hood, the yLCP axis is parallel to the transversal axis of the vehicle
and points towards the driver seat, and the zLCP axis points upwards. This coordinate
system is illustrated in Figure 1.

Figure 1. Graphical depiction of the Local Car Plane.

All quantities are expressed in SI units (Système international d’unités) unless other-
wise specified.

The state vector xs of a land vehicle can be defined as follows

xs =
[
xs ys θz,s θ̇z,s vs βs ax,s ay,s

]T, (1)

where (xs, ys) are the (x,y) coordinates of the vehicle in LTP, θz,s is the vehicle orientation
in LTP, θ̇z,s is the angular velocity of the vehicle around the zLCP-axis (yaw rate), vs is the
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velocity over ground of the vehicle, βs is the side-slip angle of the vehicle in LCP, ax,s is
the vehicle acceleration along the xLCP-axis, and ay,s is the vehicle acceleration along the
yLCP-axis.

In order to perform an objective and accurate evaluation of the OBD-obtained data and
of the inference of the TNN, two reference sensors are used: the Automotive Dynamic Mo-
tion Analyzer (ADMA) and the Correvit S-Motion. The ADMA is an INS that is equipped
with servo-accelerometers and optical gyroscopes, and can receive SatNav correction data
such as what is known as “Real-Time-Kinematic (RTK)” [23]. RTK refers to when the
SatNav receiver not only obtains information from the satellites, but from a radio antenna
as well. The ADMA-RTK system can output a centimeter-accurate position, a velocity
over ground with an accuracy of 0.03 km

h , and COG with an accuracy of 0.005◦ [24]. The
ADMA-RTK system can currently be used for the ABS/ESP ISO 26262 certification. In ad-
dition, GeneSys Elektronik, the manufacturer, was certified in 2022 to perform calibrations
according to the ISO-17025 [25] standard and is thus a calibration laboratory accredited by
DAkkS. This means that ADMA systems are internationally traceable and can be used as
reference sensors by expert organizations such as TÜV, BAST, or DEKRA, for example for
acceptance tests, which further confirms the suitability of the ADMA as a reference sensor.

The ADMA is capable of generating a measurement vector zr so that

zr =
[
xr yr θz,r θ̇z,r vr βr ax,r ay,r

]T, (2)

where (xr, yr) are the (x,y) coordinates of the vehicle in LTP, θz,r is the vehicle orientation
in LTP, θ̇z,r is the angular velocity of the vehicle around the zLCP-axis (yaw rate), vr is
the velocity of the vehicle over the ground, βr is the side-slip angle of the vehicle, ax,r is
the vehicle acceleration along the xLCP-axis, and ay,r is the vehicle acceleration along the
yLCP-axis.

The ADMA generates the measurement vector zr by using statistical filtering methods
to combines the measurements from the own inertial sensors (θ̇z,r, ax,r and ay,r) with
measurements from external sensors. Due to its high accuracy, practicality, and accessible
cost for the end-user, the preferred external sensors are the SatNav receivers. These deliver
measurements of the own position (xG, yG), COG, and velocity over ground (vG). It should
be noted that when βs → 0, θz,r → COG, which means that under traction driving [26], the
COG as measured by the SatNav can be used as correction data θz,r for θz,s.

One disadvantage of using SatNav is that there are situations where it is not available,
such as tunnels, parking structures, and urban canyons, among others. This means that
even with the state-of-the-art inertial sensors, such as the ones installed in the ADMA, a
divergence in the state vector that grows over time is unavoidable if no correction data
are available.

An alternative to the use of SatNav as correction data is the Correvit S-Motion, which
is a state-of-the-art sensor that consists of a camera mounted on the bodywork of the
vehicle that points downwards. It estimates the linear velocities along its x and y axes
by means of an optical grid method. This method consists of detecting the motion over
time of certain patterns that are captured with the camera. Like GeneSys Elektronik, the
manufacturer of the Correvit S-Motion, Kistler, was accredited in 2022 by DAkkS as a
calibration laboratory [27], which confirms the adequacy of the Correvit S-Motion to serve
as a reference sensor. Further details of this method can be found in [28]. For simplification
purposes, it is assumed that the x and y axes of the Correvit are parallel to the xLCP and
yLCP axes, respectively. The Correvit is able to measure the linear velocities vx,LCP and
vy,LCP along the xLCP and yLCP axes with an accuracy of ±0.2 km

h [29]. With vx,LCP and
vy,LCP, the velocity of the vehicle over ground vr can be calculated as follows

vr =
√

v2
x,LCP + v2

y,LCP. (3)
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In order to guarantee the robustness of the reference data, the Correvit delivers the
velocity correction data to the ADMA, which fuses the measurements of both. The velocity
vr that results from the fusion of the ADMA, SatNav, and Correvit data serves as the
reference used in this research work.

3.2. Data Generation

In order to collect both the OBD and the reference data, a test vehicle (shown in Fig-
ure 2) is equipped with (1) state-of-the-art reference sensors (the ADMA and the Correvit),
and (2) a car PC with PCI CAN interfaces that records both the OBD and the reference data.
Given that the car PC is equipped with PCI interfaces, one is able to avoid the unknown
and random data transmission delays that are typical of the USB protocol.

Figure 2. Test vehicle equipped with (1) an ADMA in the trunk (blue), (2) a Correvit sensor on the
trailer hitch (gray), (3) a car PC in the trunk (gray), (4) a SatNav receiver on the roof (gray), and (5) a
radio antenna for RTK correction data on the roof (black).

The algorithms needed to generate the dataset are implemented in Robotic Operating
System (ROS), which runs on Linux. The process consists of (1) acquiring the raw data
from both the OBD and reference sensors, (2) parsing the raw data of both the OBD and the
reference sensors, (3) storing of both raw and parsed data in rosbags, (4) exporting rosbags
to Comma-Separated Values (CSV) files, and (5) data preparation. The process is shown in
Figure 3.

z

v

r
Correvit

SatNav 
(RTK)

OBD

ADMA ADMA parser

OBD parser

bag2csv Sensor
dataset

*rosbag *CSV

Car PC
v
vy,LCP
x,LCP

COG
vG

UTC

o

Reference sensors

Figure 3. Methodology for data generation.

In order to acquire the raw OBD data, a custom cable is built that has an OBD-II plug
on one side and a CAN sub-D9 plug on the other end. The cable is connected accordingly
to the OBD-II port of the test vehicle and the car PC. Two ROS nodes are then implemented:
one that reads the raw OBD data and one that parses them. There are two options to parse
the OBD data: (A) by means of the OBD protocol and (B) by means of an open gateway.
In the case of the OBD protocol, the J1979 standard [30] specifies the OBD-II PIDs (OBD-II
Parameter IDentifications), which allows it to request certain diagnostic information from
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OBD-II compliant vehicles. The J1979 standard also defines how to parse the OBD data.
The open gateway option applies to vehicles that are specially prepared for R&D, as can be
prototypes, custom test vehicles, or mock-ups. In these cases, the OBD data can be parsed,
for example, with a CAN matrix provided by the manufacturer of the test vehicle. Among
others, the OBD measurements can include the velocity vo as shown by the speedometer,
the individual velocity of each tire, and the steering angle. However, for the purpose of
this paper, only vo is considered.

As for the reference sensor data, the Correvit is connected to the ADMA via a CAN
cable and the ADMA is connected to the car PC via an Ethernet cable. The ADMA receives
position, velocity, and COG correction data from a SatNav receiver, and velocity correction
data from the Correvit as well. The ADMA then sends to the car PC the performed
inertial measurements, the correction data as received by the external sensors (SatNav and
Correvit), and the result of the fusion of the inertial measurements with the correction data.
A ROS node that runs on the car PC then reads and parses the ADMA data, as shown
in [31]. Once both the OBD and reference data are parsed,they are stored in form of rosbags.
The rosbags are finally converted to CSV files according to [32].

The sensor synchronization is a key aspect of objective data evaluation because it
allows one to make a temporal correlation of the data. Some external sensors, such as the
ADMA and the Correvit, have the option to be connected to SatNav receivers that deliver
the UTC-Time so that the performed measurements are timestamped. This allows one
to have a common and universal time axis to compare the measurements from different
sensors. The OBD data, on the other hand, do not have a timestamp as read from the OBD
gateway, nor can they be connected directly to a SatNav receiver to synchronize the data,
but they have to be timestamped by the external hardware that reads the OBD data. For
this research work, the synchronization of all sources of information (OBD, ADMA, and
Correvit) is carried out by means of the UNIX time. As stated above, the data of all sources
of information are read and recorded by means of a ROS implementation, which allows
one to timestamp the read information with the internal clock of the car PC. As long as
the car PC has internet access, it synchronizes its internal clock with the UNIX time, thus
providing an adequate alternative for the UTC-time. One important aspect to consider is
that, even when PCI interfaces are used, given that the algorithms run on ROS and Linux,
there are still operating system-related data transmission delays that are neither known
nor controllable. It is only when one compares the timestamps of the recorded data (Unix
from the car PC and UTC from the SatNav receivers) that a temporal misalignment of the
data can be spotted. Whenever a synchronization is needed, the OBD measurements are
associated with the reference measurements that are closest in time. The synchronization
error ηt that results is defined as the time difference between the synchronized OBD vo and
the corresponding reference sensor vr measurements, so

ηt = |ti,OBD − tj,REF|. (4)

Due to the limitations of the CAN-Bus standard, there are time differences between
the OBD-obtained measurements and those made by the reference sensors (ADMA and
Correvit). This happens mainly because several electronic control units are connected to
the same Bus and send information at the same time. Each CAN information package has
an arbitration ID that is assigned according to the importance of the transmitted message.
This arbitration ID determines which messages are transmitted over the Bus at any given
time, while the rest of the messages are lost. If more important information than the
vehicle velocity is transmitted over the Bus (as can be the braking information), the velocity
information is lost, thus causing that the velocity information to not be read from the OBD
at deterministic time intervals. Moreover, the number of sensors installed in the vehicles
also varies, thus causing variations in the load of the CAN-Bus, with the corresponding
uncertainties in regards to the latency of the OBD data.

To the best of our knowledge, there are no publicly available OBD datasets that (1)
have enough data for the training of ML-algorithms and (2) that have highly accurate
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sensors as reference. Therefore, an in-house dataset of real sensor data is generated. Given
that it has not yet been published and in order to offer a better understanding of the
proposed method, a detailed description of the generated dataset and of its pre-processing
is given in what follows.

For this, the test vehicle is randomly driven on the closed test track of the University
of Applied Sciences of Ingolstadt (Technische Hochschule Ingolstadt), Germany, covering
velocities from 0 km

h to 50 km
h . The dataset has a duration of ≈1282 min, which accounts

for ≈535 km, 7, 691, 147 reference measurements and 3, 840, 995 OBD measurements. So as
foster the diversity of the dataset, the vehicle was driven without aids that help maintain
a constant velocity, such as cruise control. In addition, random acceleration and braking
instances were included. The reason for the different number of OBD and reference
measurements is that the OBD data cannot be obtained in deterministic time intervals.
Instead, the arbitration IDs and the CAN implementation determine when the OBD data
are published. A histogram of the dataset is shown in Figure 4.
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Figure 4. Histogram of the generated dataset. Each color indicates a velocity range of the refer-
ence data.

3.3. Data Processing

After the sensor dataset is generated, the data processing is performed. The objective
of this is to generate an ML- database from the sensor dataset. The ML-database is used
later to train and evaluate the TNN (Section 3.4). The process consists of three steps:
(1) data selection (Section 3.3.1), (2) data balancing (Section 3.3.2), and (3) data splitting
(Section 3.3.3). A graphic depiction of the process is shown in Figure 5 and is detailed in
the following subsections.

Data 
selection

Data 
balancing

Data 
spli�ing

ML-
database

Sensor 
data

Figure 5. Methodology for the data processing.

3.3.1. Data Selection

This step aims to generate a primary set of samples from the sensor dataset gen-
erated in Section 3.2. This groups OBD data with the corresponding reference sensor
measurements and filter out-of-range samples. A graphic depiction of this is shown in
Figure 6.
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Figure 6. Overview of the data selection process.

Data Loading

The first step is to load the sensor dataset Draw. This is composed by all the performed
driving tests so that

Draw = D1
⋃

D2
⋃
· · ·

⋃
Di
⋃
· · ·

⋃
DI , (5)

where Di indicates the i-th driving test and I the total number of driving tests.
Each i-th driving test Di contains two strings: one for the OBD data (Ti,OBD) and

another for the reference sensor measurements (Ti,REF), so that

Di = {Ti,OBD, Ti,REF}, (6)

where OBD denotes OBD data and REF indicates reference sensor measurements.
Each string T is a temporal ordered sequence of points p = (v, t), where v is a velocity

measurement with its corresponding timestamp t. Each string TOBD and TREF is then
defined as follows

TOBD = [p1,OBD, p2,OBD, . . . , pi,OBD, . . . , pNOBD,OBD], (7)

pi,OBD = (vi,OBD, ti,OBD), (8)

TREF = [p1,REF, p2,REF, . . . , pj,REF, . . . , pNREF,REF], and (9)

pj,REF = (vj,REF, tj,REF), (10)

where NOBD is the total number of OBD data points and NREF is the total number of
reference measurements.

Sample Generation

The next step is to generate samples from Draw in order to train the ML-model. Each
sample S = (χ, γ) is composed of an input sequence χ and a target sequence γ so that

χ = [v1,OBD, v2,OBD, . . . , vi,OBD, . . . , vLin,OBD], and (11)

γ = [v1,REF, v2,REF, . . . , vj,REF, . . . , vLout,REF], (12)

where Lin indicates the length of the input sequence and Lout the length of the target sequence.
Given that the objective is to use OBD data to infer future velocity measurements as if

they were made by the reference sensors, the timestamp associated with the first velocity
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measurement of the target sequence must be bigger than the timestamp associated to the
last element of the input sequence, so that

ti,OBD < ti+1,OBD < . . . < ti−1+Lin,OBD < tj,REF < tj+1,REF < . . . < tj−1+Lout,REF, (13)

where the subindex i indicates the i-th element of TOBD and j indicates the j-th element
of TREF.

In order to distribute the elements of TOBD and TREF among all samples S, first, Lin

is set to an arbitrary value. TOBD is then split into Nseq = bNOBD
Lin
c input sequences, where

b·c indicates the floor operation and each input sequence is assigned to a sample. The
target sequence of the i-th sample is composed of Lout elements of TREF with a timestamp
between that of the last element of the k-th and that of the first element of the k + 1-th input
sequences. A graphical depiction of the sample generation is shown in Figure 7.

j+2

OBD

Sample k (Input) Sample k + 1 (Input)

time

T

REFT

ti+1,OBD ti+2,OBD ti+3,OBDtj,REF tj+1,REFti,OBD tj-1,REF tj+2,REF

i+1 i+2 i+3i

jj-1 j+1

Sample k (Target)

Figure 7. Graphical depiction of the sample generation for Lin = 3 .

Samples Filtering

In order to have a homogeneous and meaningful sample dataset, the previously
generated samples are filtered according to the following criteria:

1. Consistent length. Due to the fact that the TNN expects input and target sequences
of fixed length, and to avoid sequence completion techniques, such as padding, it is
desired that the length of both the input and target sequences that form the samples
be consistent. Then, the input sequence length Lin is manually fixed and the output
sequence length Lout is determined by the most representative target sequence length
observed in the data, which in this case is two. The samples with Lout 6= 2 are
filtered out.

2. Meaningful velocities. Given that the present research work focuses on road vehi-
cles, all elements of input sequences with vo > 400 km

h are filtered out. This deletes
outliers. Secondly, only samples with target sequences that contain velocities be-
tween 5 km

h and 50 km
h are considered. This covers the typical velocity range in urban

traffic environments.
3. Temporal consistence. As stated above, the OBD data cannot be obtained in de-

terministic time intervals. This implies atypical time lapses between consecutive
measurements. In order to detect these atypical time lapses, each time lapse ∆tOBD
between all consecutive OBD measurements contained in TOBD is calculated. This
results in NOBD − 1 values. A mean µ∆t,OBD and a standard deviation σ∆t,OBD are
computed from all ∆tOBD values. Each ∆tOBD is compared to µ∆t,OBD and σ∆t,OBD. If
µ∆t,OBD − σ∆t,OBD < ∆tOBD < µ∆t,OBD + σ∆t,OBD, the sample where ∆tOBD belongs is
kept and filtered out otherwise. The target sequence is filtered by analogy.

The dataset generated by the filtered samples is termed “primary sample set”.

3.3.2. Data Balancing

This step aims to generate sample sets from the primary sample set generated in
Section 3.3.1. This groups the samples according to predefined velocity ranges and equalize
the number of samples of all groups. A graphic depiction of this is shown in Figure 8.
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Figure 8. Overview of the data balancing process.

Sample Grouping by Velocity Range

All samples are grouped according to the mean velocity of the target sequence. Each
group covers a range of 5 km

h , which results in a total of nine groups, where group 1 covers
from 5 km

h to 10 km
h and group 9 covers from 45 km

h to 50 km
h .

Data Shuffling

All samples within each group are shuffled so that samples from different driving
tests are mixed with each other.

Data Trim

So as to have the same number of samples in all groups, the groups are trimmed to the
size of the group with the least number of samples. This aids in avoiding training biases
towards a specific group.

3.3.3. Data Splitting

This step aims to generate the training Dtrain, validation Dval, and test Dtest datasets
that compose the ML-database DML required to train and evaluate the TNN. A graphic
depiction of this is shown in Figure 9.

Data spli�ing
Sample 

set 
(Group 1)

Data spli�ing
Sample 

set 
(Group 9)

Training set

Validation set

Test set

Data 
shuffling

Training 
dataset

Training 
dataset

Data 
shuffling

Test
dataset

Test
dataset

Data 
shuffling

Validation 
dataset

Validation 
dataset

Group 1

Group 9

Training set

Validation set

Test set

Data spli�ing

ML-
database

Figure 9. Overview of the data splitting process.

First, each of the groups generated in Section 3.3.2 is split so that 70 % of its elements
go into a training set, 15 % of its elements to a validation set, and 15 % to a test set. Then, all
training sets are merged and shuffled so as to generate a single training dataset Dtrain. The
same is carried out for all validation sets in order to generate a single validation dataset
Dval and for all test sets to obtain a single test dataset Dtest. The distribution of the training,
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validation, and test datasets end up with 46,964, 10,064, and 10,064 samples, respectively,
for each one of the velocity groups.

A graphical depiction of the result of the data shuffling is shown in Figure 10.

10 20 30 40 50 60 70 80 90 ...

Samples

Figure 10. The order of the first 100 training samples. Each color indicates the target velocity range
as shown in Figure 4.

3.4. Transformer Neural Network

In this paper, the used architecture of the TNN is based on the original Encoder–
Decoder architecture proposed in [17] and shown in Figure 11. The task is a regression,
where the network is trained to infer a sequence γ̂ from an input sequence χ so that
min(L(γ̂, γ)), where L expresses the loss function. In what follows, an overview of the
model architecture and implementation details are given.

Input
Embedding

Output
Embedding

Train loss
or 

Eval. metric

Target
Sequence

Predicted
Sequence

Enc. Input 
Sequence

Positional
Encoding

Sublayer 1

Multi-Head
A�ention

Add & 
Normalization

Sublayer 2

Feed Forward

Add & 
Normalization

. . .

+ Positional
Encoding

Sublayer 1

Masked Multi-Head
A�ention

Add & 
Normalization

Sublayer 2

Multi-Head 
A�ention Enc-Dec

Add & 
Normalization

+

Sublayer 3

Feed Forward

Add & 
Normalization

. . .

Linear Layer

Predictions

Dec. Input 
Sequence

Ground truth

DECODER

ENCODER

Layer 1 DecoderLayer 1 Encoder

Layer N Decoder

Layer N Encoder

Figure 11. Model architecture of the TNN based on [17].

3.4.1. Model Architecture

The network is trained in a recurrent manner. This means that in each iteration, a
single element of the predicted sequence is inferred. This first inferred element is then
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added to the input sequence of the TNN-decoder to start the next prediction iteration. This
is repeated until all Lout elements of the predicted sequence are obtained.

The input sequence is normalized to the [0,1] range so that

v′i,OBD =
vi,OBD −min(χ̃1)

max(χ̃1)−min(χ̃1)
, (14)

where χ̃1 contains the first elements of all input sequences of Dtrain, vi,OBD is a non-
normalized value contained in χ̃1, and v′i,OBD is the normalized value of vi,OBD. This
normalization process is repeated for the rest of the elements of the input sequence.

3.4.2. Implementation Details

The main parameters selected in relation to the implemented TNN-based model are
shown in Table 1.

Table 1. Selected parameters of the model based on TNN.

Parameter Value

# Encoder layers 6
# Encoder sub-layers 2

# Decoder layers 6
# Decoder sub-layers 3

# Attention heads 8
# Hidden dimension Feed Forward Network 2048

# Model dimension 512
# Attention queries dimension 64

# Attention keys dimension 64
# Attention values dimension 64

Dataset and Batching

The dataset obtained after the sample generation (Section 3.2) and processing (Sec-
tion 3.3) is partitioned into 70 % for training, 15 % for validation, and 15 % for testing.
The dataset in each of the three partitions is balanced in relation to the range of velocities
contained in the samples. The number of samples of the dataset varies depending on Lin.
More details are given later (Section 4.4.1).

The selected batch size (number of samples per batch, Nsamp) varies from 16 to 64 for
different experiments performed, so that in each experiment, the selected value is specified.

Loss Function

In this work, the Mean Squared Error is adopted as loss function L. Then, the com-
puted loss for a batch Lbatch is determined as follows

Lbatch =
1

Nsamp

1
Lout

Nsamp

∑
k=1

Lout

∑
t=1

(vt,k,REF − v̂t,k,REF)
2, (15)

where vt,k,REF is the t-th element of the k-th target sequence and v̂t,k,REF is the t-th element
of the k-th inferred sequence.

Regularization and Drop-Out

In the TNN model, each sub-layer of both the encoder and the decoder has a residual
connection, which is completed by a normalization layer. Before these operations are
performed, dropout is used as a regularization technique. A value of 0.1 is chosen following
the original implementation during the training phase. The validation and testing of the
model are performed with a dropout value equal to 0.
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Optimizer

The model is trained via backpropagation with the Adam optimizer [33]. The learning
rate lr is determined by the function flr(·) that starts with a warm-up phase and contin-
ues with a decaying learning rate afterwards. This strategy was previously investigated
in [34,35] to assess its significance in training TNNs to help the network convergence.
Constant values of the learning rate without a warm-up phase often causes the networks
to quickly stagnate at local minima and not converge. The learning rate function flr(·)
depends on the six parameters lrmax, lrstart , nwarmup, ndrop, drop, and nepoch and is defined
as shown in Equation (16).

lr = flr(·) =


lrmax−lrstart

nwarmup
(̇nepoch − 1), nepoch ≤ nwarmup

lrmax

drop

(
nepoch−1−nwarmup

ndrop

) , nepoch > nwarmup. (16)

The selected parameters for the ADAM optimizer are β1 = 0.9, β2 = 0.99, and
ε = 10−9. The input parameters of the learning rate function flr(·) are indicated in the
corresponding experiments.

Hardware

The model was trained on a computer running the Windows 10 operating system. It
was equipped with an Intel Xeon W-2445 CPU processor with 3.7 GHz, 64 GB RAM, and
a NVIDIA TITAN RTX GPU graphics card with 24 GB. The average run time for a single
inference was 0.035 s during the evaluation. This time considers training with 422,680 (70%)
samples, 90,574 samples (15%) for validation, and 90,574 samples (15%) for the test. The
input data for each sample consider the OBD velocity as a feature. The input length is 5 for
the baseline training and is varied for the input length ablation study. The learning target
of each sample considers the reference sensor velocity as feature and has a length of 2.

4. Results

Once the ML-database was generated (Section 3.2) and prepared (Section 3.3), the
next step was to evaluate the performance of the TNN to predict a sequence of future
velocity data when it receives an input sequence composed by OBD measurements. In
addition, ablation studies are conducted to obtain more details about the performance and
robustness of the model against (1) the modification of the length of the input data and (2)
the modification of the database size.

4.1. Evaluation Metrics

The performance of the ML-model is evaluated in terms of regression metrics. The
following well-known evaluation metrics are considered: (1) Mean Absolute Error (MAE),
(2) Root Mean Squared Error (RMSE), (3) R2-Score (R2), (4) Mean Percentage Error (MPE), and
(5) Mean Absolute Percentage Error (MAPE). These metrics are defined in Equations (17)–(21)
and consider the target value vt,k,b,REF, the mean of the targets values v, and the predicted
value v̂t,k,b,REF:

MAE =
1

Nbatch

1
Nsamp

1
Lout

Nbatch

∑
b=1

Nsamp

∑
k=1

Lout

∑
t=1
|vt,k,b,REF − v̂t,k,b,REF|, (17)

RMSE =

√√√√ 1
Nbatch

1
Nsamp

1
Lout

Nbatch

∑
b=1

Nsamp

∑
k=1

Lout

∑
t=1

(vt,k,b,REF − v̂t,k,b,REF)2, (18)
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R2 = 1−

Nbatch
∑

b=1

Nsamp

∑
k=1

Lout
∑

t=1
(vt,k,b,REF − v̂t,k,b,REF)

2

Nbatch
∑

b=1

Nsamp

∑
k=1

Lout
∑

t=1
(vt,k,b,REF − v)2

, (19)

MPE = 100 % · 1
Nbatch

1
Nsamp

1
Lout

Nbatch

∑
b=1

Nsamp

∑
k=1

Lout

∑
t=1

vt,k,b,REF − v̂t,k,b,REF

vt,k,b,REF
, (20)

MAPE = 100 % · 1
Nbatch

1
Nsamp

1
Lout

Nbatch

∑
b=1

Nsamp

∑
k=1

Lout

∑
t=1

|vt,k,b,REF − v̂t,k,b,REF|
vt,k,b,REF

, (21)

where Nbatch indicates the number of batches per epoch.

4.2. Hyper-Parameter Optimization

The first experiments are performed with the objective of finding a combination of
parameters for the learning rate function flr(·) that result in the lowest validation loss.
Specifically, the parameters lrmax and drop are varied, such that lrmax ∈ {10−3, 10−4, 10−5},
drop ∈ {1.1, 1.3, 1.5}, and the remaining parameters are fixed at lrstart = 10−12, nwarmup = 5
and ndrop = 12.5. Out of these ranges, nine parameter combinations are possible. The TNN
is then trained with a database size of 603,828 samples, for 20 epochs, with a batch size of
64, an input sequence length of 5, and a target sequence length of 2. The evolution of the
learning rate with respect to the training epochs can be seen in Figure 12. The training and
validation losses for each epoch are shown in Figure 13 and 14, respectively.
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Figure 12. Learning rate with respect of the training epoch for the hyper-parameter optimization.
[lrmax = 10−3, drop = 1.1], [lrmax = 10−4, drop = 1.1], [lrmax = 10−5, drop = 1.1], [lrmax =

10−3, drop = 1.3], [lrmax = 10−4, drop = 1.3], [lrmax = 10−5, drop = 1.3], [lrmax = 10−3, drop = 1.5],
[lrmax = 10−4, drop = 1.5], and [lrmax = 10−5, drop = 1.5].
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Figure 13. Training loss with respect of the training epoch for the hyper-parameter optimization.
[lrmax = 10−3, drop = 1.1], [lrmax = 10−4, drop = 1.1], [lrmax = 10−5, drop = 1.1], [lrmax =

10−3, drop = 1.3], [lrmax = 10−4, drop = 1.3], [lrmax = 10−5, drop = 1.3], [lrmax = 10−3, drop = 1.5],
[lrmax = 10−4, drop = 1.5], and [lrmax = 10−5, drop = 1.5].

In view of the results shown in Figure 14, the parameters lrmax = 10−4 and drop = 1.1
show the lowest validation loss. Thus, these are the parameter values for the learning rate
function for the rest of the experiments carried out in this work .
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Figure 14. Validationloss with respect of the validation epoch for the hyper-parameter optimization.
[lrmax = 10−3, drop = 1.1], [lrmax = 10−4, drop = 1.1], [lrmax = 10−5, drop = 1.1], [lrmax =

10−3, drop = 1.3], [lrmax = 10−4, drop = 1.3], [lrmax = 10−5, drop = 1.3], [lrmax = 10−3, drop = 1.5],
[lrmax = 10−4, drop = 1.5], and [lrmax = 10−5, drop = 1.5].

4.3. Baseline Training and Inference

Once the parameters for the learning rate function are determined, a quantitative
evaluation of the TNN is performed. For this, the generalization and inference capability of
the model for new samples is evaluated. This experiment considers the ML-database with
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603,828 samples that are split into 70% training, 15% validation, and 15% test, 50 epochs, a
batch size of 16, an input sequence length of 5, and a target sequence length of 2.

From the experiment described in the previous paragraph, 50 models were obtained:
one per epoch. The model with the lowest validation loss during the validation step is
considered as the best one; it is considered the baseline model for this work and is used for
the test (inference) step. The evaluation metrics of the inference for the aforementioned
model are shown in Table 2.

Table 2. Evaluation metrics for the baseline model for each of the velocity ranges.

Group
MAE RMSE

R2
MPE MAPE(

km
h

)(
km
h

)(
km
h

) (
km
h

)(
km
h

)(
km
h

)
(%) (%)

5 km
h –10 km

h 0.129 0.191 0.984 −0.173 0.020
10 km

h –15 km
h 0.122 0.221 0.973 −0.004 0.010

15 km
h –20 km

h 0.145 0.217 0.977 −0.001 0.080
20 km

h –25 km
h 0.192 0.252 0.967 0.003 0.008

25 km
h –30 km

h 0.180 0.237 0.974 0.005 0.007
30 km

h –35 km
h 0.181 0.251 0.970 0.004 0.006

35 km
h –40 km

h 0.176 0.247 0.971 0.003 0.005
40 km

h –45 km
h 0.197 0.269 0.964 0.003 0.005

45 km
h –50 km

h 0.181 0.262 0.941 0.003 0.004

5 km
h –50 km

h 0.167 0.240 0.999 0.001 0.008

4.4. Ablation Studies

So as to determine the robustness of the model against variations in the input length
and the number of training samples, different ablation studies were performed. In what
follows, the quantitative results are shown.

4.4.1. Modification of the Input Length

The first ablation study aimed to determine the performance of the model when the
number of elements contained in the input sequence Lin was varied. The inference time
required for the different cases was computed as well. The results are shown in Table 3,
where the sequence length varies from 1 to 20, which results in a total of eight experiments.

Table 3. Evaluation metrics for the TNN model when trained with input sequences of differ-
ent lengths.

Input Length MAE RMSE R2 MPE MAPE Time

Lin

(
km
h

)(
km
h

)(
km
h

) (
km
h

)(
km
h

)(
km
h

)
(%) (%) µ ± σ (s)

1 0.278 0.361 0.999 −0.001 0.015 0.0325 ± 0.0037
2 0.472 0.604 0.998 0.015 0.023 0.0341 ± 0.0036
3 0.438 0.545 0.998 0.017 0.023 0.0340 ± 0.0036
4 0.333 0.419 0.999 0.002 0.019 0.0345 ± 0.0035
5 0.327 0.435 0.999 −0.012 0.017 0.0349 ± 0.0038

10 0.360 0.453 0.999 −0.008 0.018 0.0356 ± 0.0030
15 0.362 0.458 0.999 0.010 0.017 0.0356 ± 0.0027
20 0.374 0.481 0.999 −0.007 0.016 0.0377 ± 0.0032

It is important to note that as the length of the input sequence Lin increases, the number
of training samples that can be generated from the ML-database decreases. This would
imply a different number of training samples for each variation in Lin. In order to perform
all experiments with the same number of samples, and thus avoid Lin-derived biases, the
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number of training samples is fixed for all experiments. Therefore, the total number of
samples is set to 50,000, split into 70% training, 15% validation, and 15% test. All the
experiments are performed with a maximum number of 20 training epochs, a batch size
of 16, a target sequence length of two, and an input sequence length that varies for each
experiment. The evaluation metrics are reported in Table 3.

4.4.2. Modification of the Database Size

The ML-database generated and used in this paper consists of a large number of
measurements. The objective of this ablation study is to determine the influence of the
number of samples on the model performance. In this way, an adequate number of samples
needed to obtain an acceptable model performance can be determined. This study consists
of six experiments, where the ML-database varies from 1000 to 500,000, with an equal
number of samples from each speed group defined in Section 3.3.2, and the data are split
into 70% training, 15% validation, and 15% testing. Furthermore, all the experiments
consider a maximum number of training epochs of 50, a batch size of 16, an input sequence
length of five, and a target sequence length of two. Table 4 shows the results of the study.

Table 4. Evaluation metrics for the TNN model when trained with different database sizes.

Database Size
MAE RMSE

R2
MPE MAPE(

km
h

)(
km
h

)(
km
h

) (
km
h

)(
km
h

)(
km
h

)
(%) (%)

1000 0.863 1.037 0.999 −0.017 0.057
5000 0.482 0.570 0.998 −0.002 0.028

10,000 0.252 0.310 0.998 −0.007 0.011
50,000 0.251 0.312 0.999 0.005 0.013

100,000 0.223 0.320 0.999 −0.002 0.010
500,000 0.210 0.273 0.999 −0.002 0.010
603,828 0.167 0.240 0.999 −0.001 0.008

4.5. Benchmark of the Transformer Neural Network

In order to contextualize the performance of the TNN to generate velocity correction
data, two values are compared: (1) the MAE of the inference of the TNN, defined as
MAE-TNN, and (2) the MAE when the OBD velocity data are compared to the reference
sensor data, defined as MAE (vo). To calculate MAE (vo), the OBD velocity data vo are
synchronized with the reference sensor data vr by using the UNIX time (see Section 3.2).
Each OBD data point is then associated with the reference sensor measurement that is closest
in time. Then, the velocity error ηOBD of a single OBD measurement is then defined as

ηOBD = |vo − vr|. (22)

Thus, the MAE (vo) is calculated as shown in Equation (23).

MAE (vo) =
1
N

N

∑
i=1

ηOBD, (23)

were N indicates the number of data points.
Then, the velocity errors per velocity group reported as MAE-TNN and MAE (vo) are

shown in Table 5, when considering the complete database. So as to gather more knowledge
about the impact of the database size, the same comparison was performed, but when the
TNN was trained with 1000 samples. This is shown in Table 6.
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Table 5. MAE for the OBD vs. reference sensor comparison and the MAE for the inference of the
TNN vs. reference sensor comparison. Database size: 603,828.

Group
MAE-TNN MAE (vo) Error Variation(

km
h

)(
km
h

)(
km
h

) (
km
h

)(
km
h

)(
km
h

)
%

5 km
h –10 km

h 0.129 0.753 −82.87
10 km

h –15 km
h 0.122 1.462 −91.48

15 km
h –20 km

h 0.145 2.135 −93.21
20 km

h –25 km
h 0.192 2.812 −93.17

25 km
h –30 km

h 0.180 3.385 −94.68
30 km

h –35 km
h 0.181 4.052 −95.53

35 km
h –40 km

h 0.176 4.735 −96.28
40 km

h –45 km
h 0.197 5.434 −96.37

45 km
h –50 km

h 0.181 6.248 −97.10

5 km
h –50 km

h 0.167 3.480 −95.07

Table 6. MAE for the OBD vs. reference sensor comparison and the MAE for the inference of the
TNN vs. reference sensor comparison. Database size: 1000.

Group
MAE-TNN MAE (vo) Error Variation(

km
h

)(
km
h

)(
km
h

) (
km
h

)(
km
h

)(
km
h

)
%

5 km
h –10 km

h 1.864 0.753 +147.54
10 km

h –15 km
h 0.360 1.462 −74.86

15 km
h –20 km

h 0.630 2.135 −70.49
20 km

h –25 km
h 0.744 2.812 −73.54

25 km
h –30 km

h 0.992 3.385 −70.69
30 km

h –35 km
h 1.040 4.052 −74.33

35 km
h –40 km

h 0.588 4.735 −87.58
40 km

h –45 km
h 0.946 5.434 −82.59

45 km
h –50 km

h 0.603 6.248 −90.35

5 km
h –50 km

h 0.863 3.480 −74.51

It should be noted that, as stated above, the OBD data cannot be obtained in deter-
ministic time intervals, which leads to the fact that not every OBD measurement of the
sensor dataset (Section 3.2) has a corresponding reference sensor data measurement. With
the generated dataset, a total of 3,428,099 OBD measurements can be synchronized with a
reference sensor measurement. The synchronization errors ηt can also cause velocity errors.
This maximum expected synchronization-derived velocity error ηv is also computed. For
this, a typical maximum acceleration for road vehicles of 9.8 m

s2 is assumed. The synchroniza-
tion errors derived from the used synchronization strategy and synchronization-derived
velocity errors are shown in Table 7.

In addition, the EU regulation ([36]) defines the relation between the reference velocity
vr and the OBD velocity vo as follows

0 ≤ (vo − vr) ≤ 0.1 · vr + 4
km
h

, (24)

which means that there is an absolute component (+4 km
h ), as well as a correction interval

that can range from 0% to 10%. This is defined as such with the objective that the velocity
shown to drivers is never less than the real velocity over ground with which the vehicle
moves.
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Table 7. Synchronization errors between an OBD and a reference sensor measurement. # of measure-
ments: 3,428,099.

Group min(ηt) mean(ηt) max(ηt) max(ηv)(
km
h

)(
km
h

)(
km
h

)
(s) (s) (s)

(
km
h

)(
km
h

)(
km
h

)
5 km

h –10 km
h 0.0 0.0025 0.0098 0.346

10 km
h –15 km

h 0.0 0.0024 0.0099 0.349
15 km

h –20 km
h 0.0 0.0025 0.0099 0.349

20 km
h –25 km

h 0.0 0.0025 0.0099 0.349
25 km

h –30 km
h 0.0 0.0025 0.0097 0.342

30 km
h –35 km

h 0.0 0.0025 0.0098 0.346
35 km

h –40 km
h 0.0 0.0025 0.0099 0.349

40 km
h –45 km

h 0.0 0.0025 0.0092 0.325
45 km

h –50 km
h 0.0 0.0025 0.0099 0.349

5 km
h –50 km

h 0.0 0.0025 0.0099 0.349

From the Equation (24), one can obtain an interval where the reference velocity could
be with respect to the OBD velocity. An expert with knowledge about this regulation could
then estimate an “expert velocity” ve from the OBD velocity under the assumption that
this ve is most probably in the middle of said interval. The expert velocity would then be
estimated as follows

ve =
vo − 2
1.05

. (25)

The MAE for ve vs. vr, defined as MAE (ve), compared to the MAE of the inference
of the TNN vs. vr are shown in Tables 8 and 9. A comparison of ve, vr and vo is shown in
Figure 15.

Figure 15. Comparisonbetween the reference (vr), expert (ve) and OBD (vo) velocities.

In order to show the relation between the OBD and the reference sensor data, the
synchronized OBD data are re-arranged by ordering the reference velocity in ascending
order. Then, first, with respect to Equation (24), the relation rv between each reference
velocity vr and its corresponding OBD measurement vo is defined, with respect to the
upper limit of the interval indicated by the equation. This is obtained as follows:

rv =
vo−4

1.1
vr

. (26)

The results are shown in Figure 16 and Table 10.
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Table 8. MAE for ve vs. vr and the MAE for the inference of the TNN vs. vr. Database size: 603,828.

Group
MAE-TNN MAE (ve) Error Variation(

km
h

)(
km
h

)(
km
h

) (
km
h

)(
km
h

)(
km
h

)
%

5 km
h –10 km

h 0.129 1.539 −91.62
10 km

h –15 km
h 0.122 1.108 −88.99

15 km
h –20 km

h 0.145 0.706 −79.46
20 km

h –25 km
h 0.192 0.365 −47.40

25 km
h –30 km

h 0.180 0.180 0.00
30 km

h –35 km
h 0.181 0.436 −58.49

35 km
h –40 km

h 0.176 0.823 −78.61
40 km

h –45 km
h 0.197 1.256 −84.62

45 km
h –50 km

h 0.181 1.809 −89.99

5 km
h –50 km

h 0.167 0.927 −81.98

Table 9. MAE for ve vs. vr and the MAE for the inference of the TNN vs. vr. Database size: 1000.

Group
MAE-TNN MAE (ve) Error Variation(

km
h

)(
km
h

)(
km
h

) (
km
h

)(
km
h

)(
km
h

)
%

5 km
h –10 km

h 1.864 1.539 21.12
10 km

h –15 km
h 0.360 1.108 −67.51

15 km
h –20 km

h 0.630 0.706 −10.76
20 km

h –25 km
h 0.744 0.365 103.84

25 km
h –30 km

h 0.992 0.180 451.11
30 km

h –35 km
h 1.040 0.436 138.53

35 km
h –40 km

h 0.588 0.823 −28.55
40 km

h –45 km
h 0.946 1.256 −24.68

45 km
h –50 km

h 0.603 1.809 −66.67

5 km
h –50 km

h 0.863 0.927 −6.90

Table 10. Relation rv according to Equation (26). # of measurements: 3,428,099.

Group
min(rv) mean(rv) max(rv)

∆(rv∗)(
km
h

)(
km
h

)(
km
h

)
(max(rv)− min(rv))

5 km
h –10 km

h 0.001 0.486 0.790 0.789
10 km

h –15 km
h 0.070 0.718 0.898 0.828

15 km
h –20 km

h 0.001 0.809 0.912 0.911
20 km

h –25 km
h 0.347 0.861 0.911 0.564

25 km
h –30 km

h 0.062 0.889 0.921 0.858
30 km

h –35 km
h 0.546 0.910 0.934 0.388

35 km
h –40 km

h 0.608 0.927 0.949 0.341
40 km

h –45 km
h 0.689 0.939 0.959 0.271

45 km
h –50 km

h 0.689 0.952 1.043 0.353

5 km
h –50 km

h 0.001 0.833 1.043 1.042



Sensors 2023, 23, 159 23 of 28

Figure 16. Mathematical relation rv for the different velocity groups: 5 km
h –10 km

h , 10 km
h –15 km

h ,
15 km

h –20 km
h , 20 km

h –25 km
h , 25 km

h –30 km
h , 30 km

h –35 km
h , 35 km

h –40 km
h , 40 km

h –45 km
h , 45 km

h –50 km
h .

Second, with respect to Equation (24), the relation r∗v between each reference velocity
vr and its corresponding OBD measurement vo is defined, with respect to the lower limit of
the interval indicated by Equation (27). The results are shown in Table 11 and Figure 17.

r∗v =
vo

vr
. (27)

Table 11. Relation r∗v according to Equation (27). # of measurements: 3,428,099.

Group
min(r∗v) mean(r∗v) max(r∗v)

∆(rv)(
km
h

)(
km
h

)(
km
h

)
(max(r∗v)− min(r∗v))

5 km
h –10 km

h 0.0 1.1001 1.2855 1.2855
10 km

h –15 km
h 0.0 1.1173 1.2805 1.2805

15 km
h –20 km

h 0.0124 1.1240 1.2518 1.2394
20 km

h –25 km
h 0.0168 1.1242 1.1911 1.1743

25 km
h –30 km

h 0.0280 1.1233 1.1572 1.1291
30 km

h –35 km
h 0.7319 1.1249 1.1469 0.4149

35 km
h –40 km

h 0.7800 1.1260 1.1454 0.3654
40 km

h –45 km
h 0.8544 1.1282 1.1464 0.2920

45 km
h –50 km

h 0.8390 1.1329 1.2304 0.3914

5 km
h –50 km

h 0.0 1.1222 1.2855 1.2855

Figure 17. Mathematical relation vo
vr

for the different velocity groups: 5 km
h –10 km

h , 10 km
h –15 km

h ,
15 km

h –20 km
h , 20 km

h –25 km
h , 25 km

h –30 km
h , 30 km

h –35 km
h , 35 km

h –40 km
h , 40 km

h –45 km
h , 45 km

h –50 km
h .

5. Discussion

The first aspect to highlight is that, as shown in Table 2, the MAE of the inference when
using the complete generated database of 603,828 samples does not exceed 0.2 km

h , which
accounts for 0.056 m

s . This value is practically identical to the accuracy of the Correvit
S-Motion, which is one of the reference sensors. This implies that, with enough training
data, the TNN is able to generate velocity correction data, as if they were delivered by the
reference sensor itself.
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Furthermore, it is interesting to note that, as shown in Table 4, the robustness of the
method allows one to obtain highly accurate velocity correction data, even when smaller
databases are used to train the TNN. The performed test with the worst performance is still
able to deliver velocity correction data with an MAE of less than 0.9 km

h , which accounts for
0.25 m

s . This means that the accuracy of the velocity correction data that can be obtained
from the TNN is barely different (0.15 m

s difference) than that of consumer-grade SatNav
receivers [37]. This with a database size of 1000 samples.

Another proof of the robustness of the method can be inferred from Figure 15. There,
the reference velocity vr, the OBD velocity vo, and expert velocity ve are shown. One can
notice that vo, and therefore ve, present high noise levels. This can be explained by how the
dataset is generated. As mentioned in Section 3.2, the test vehicle was driven randomly on
the test track, including random and harsh acceleration and braking. This way of driving
that fosters the variability of the dataset also causes larger differences between the reference
and OBD velocity. However, the proposed method is able to learn the error patterns from
the data and is still able to generate highly accurate velocity correction data from faulty
OBD data.

One point that supports the use of ML-algorithms instead of classic mathematical
methods is the expert velocity ve. This velocity is calculated with two sources of information:
the velocity range defined by the EU regulation and an OBD velocity sample. With these
two pieces of information, one could argue (due to Gaussian distribution or statistics, for
example) that the real velocity is probably in the middle of said range. Even though classic
mathematical methods have the advantage of being interpretable, the proposed ML-method
still outperforms what someone with expert knowledge about the applicable regulation
and OBD access could deliver. This is shown in Tables 8 and 9, and Figure 15. Here, one
should remember that the sensor specifications, as well as how their measurements are
processed and made available in the OBD, are unknown.

The next aspect to highlight is shown in Table 5. There, it can be seen that the MAE of
the OBD data does increase as the velocity of the groups increases. This is consistent with
the results shown in Table 11 and Figure 17, where there is a relation r∗v ≈ 1.122, which
would make the OBD velocity vo diverge from the reference velocity vr as this last increases.

Supporting the results of Table 4, in Table 6 it can be seen that, even when one uses a
1000-sample database, the accuracy of the TNN to generate velocity-correction data vastly
outperforms the use of the raw OBD data. This is proven as the MAE of the TNN for
all velocity groups is ≈74 % better than the raw OBD data: 0.862 km

h for the TNN versus
3.480 km

h for the OBD.
An important aspect that can be derived from Tables 8 and 9 is that, even in a worst-

case scenario where the TNN is trained using a small database of 1000 samples, the mean
absolute error of the TNN-inferred velocity is smaller (6.9 %) than what an expert with
knowledge about the EU regulation could generate. On average, the benefit of using a
TNN becomes more evident as the database size is increased. When a database of 603,828
samples is used, the TNN-inferred velocity is much better (81.98 % improvement) than the
velocity that an expert could generate.

From Tables 10 and 11 and Figures 16 and 17, it can be inferred that, regardless of
whether one considers r∗v or rv, there is a somewhat constant relation between vo and vr.
Nevertheless, this is not a mathematical relation that can be expressed by a formula as it
is neither a constant offset nor a fixed percentage, but, as shown in Tables 10 and 11, this
relation presents large fluctuations. This further supports the use of ML-methods, as the
TNN is able to learn a proper relation between vo and vo, including whichever sensor noise
is present in the training data.

Another aspect worth discussing is that, as shown in Table 3, the input length does
not really provoke a decay in the accuracy of the inference of the TNN. Future work could
include an analysis to determine why the smallest length size of 1 appears to have the
lowest MAE of all the tests.
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In the different experiments performed, the runtime is measured, i.e., the time taken
by the ML-model to make a single inference with the best performing model. Thus, a
runtime of ≈40 ms is observed for the baseline training with the mentioned hardware. This
suggests that future work could include the real-time implementation of the proposed
method based on TNN.

As for the monetary aspect, the present research work serves as proof of concept, where
the proposed method is analyzed in depth for its advantages and limitations. Such an
analysis requires high-end reference sensors and computing units. As understood from the
results, the performance of the method to deliver accurate velocity correction data closely
resembles that of the reference sensors themselves. Future work would then be to analyze
the downscaling effects, that is, when other less accurate sensors are used as learn target, or
when the training and inference of the TNN are performed in resource-limited platforms.
Furthermore, the authors agree that especially for the data acquisition and training phase,
especially with very large datasets, a dedicated hardware solution is required and would be
expensive. However, the inference phase for velocity estimation given new measurements
using a trained model can be carried out with traditional processing units such as Central
Processing Units, with the help of other architectures such as Field-Programmable Gate
Arrays, instead of using Graphics Processing Units, as the latter solutions are generally
more expensive [38].

Finally, from the present research work, one limitation of the proposed method that
could be identified is the update rate of the OBD data. As explained in Section 3.2, the OBD
data cannot be obtained in deterministic intervals as a consequence of the CAN protocol.
The OBD velocity will be overwritten by any other more relevant information. If no velocity
can be obtained from the OBD, no velocity correction data can be generated.

6. Conclusions

This research work makes the contributions of (1) proposing an ML-model to generate
highly accurate velocity correction data from real-world OBD data and (2) performing
various ablation studies that confirm the robustness of the method against database size
and input sequence length variations.

The ML-model, a TNN in this case, is used for the generation of correction data
for INSs from OBD data obtained from commercial vehicles. This is with the objective of
estimating a highly accurate vehicle state that can be used for the assessment and validation
of AD and ADAS. The focus was set on velocity-correction data.

The method applied in the study covers all stages of a typical regression problem
within the supervised learning paradigm. It starts with data generation, by recording data
with a test vehicle on the CARISSMA tracks (Germany), which covers ≈ 535 km for a
duration of ≈1282 min. Subsequently, the generated data is processed (data selection, data
balancing, and data splitting) so that an in-house ML-database is generated. Finally, the
in-house database is used to train an ML-model based on TNN, and the inferences obtained
from the TNN are evaluated against state-of-the-art reference sensors.

The ML-model is able to learn the mapping from the OBD data to the reference
sensor measurements. The test results demonstrate that the method is able to make
predictions with the velocity over ground of the vehicle with an average MAE of≈0.167 km

h .
Therefore, the results of this investigation highlight the potential usefulness of TNN,
originally designed for NLP tasks, for the generation of velocity correction data for INSs
from OBD data. The results also show that the proposed method outperforms the velocity
that an expert could generate with the available data. Additionally, the inference time for
the generation of new correction data is always below 40 ms, suggesting the capability of a
real-time implementation.

This study covers the range of typical speeds in urban traffic environments, up to
50 km

h . This is due to driving limitations on the test track, presenting difficulties acquiring
enough training data at velocities higher than 50 km

h . However, the method is not limited
to these velocities, but applies to higher velocities as well. Future work could include
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gathering data at highway velocities to corroborate the accuracy of the TNN to generate
velocity-correction data. Other aspects that could be analyzed in future work are the
consideration of different weather conditions, adaptive learning online, or varying road
conditions.

It should be noted that diversity in applications to multiple vehicles is not included in
this work because the main objective is to present the methodology starting from the data
acquisition to the generation of correction data in the ML inference phase. The robustness
of the method using the test vehicle is supported by the results provided. However, the
method is not exclusive to the vehicle used but can be extended to different types of vehicles.
In this regard, future research is conceived to evaluate the use of transfer learning so that
a pre-trained model is used as a general solution and fine-tuning is applied to adapt the
model to each specific vehicle.

Finally, only the velocity over the ground was used to generate velocity-correction
data. Future work could also include the analysis of other sensors (such as the wheel-speed
sensors or the steering-wheel angle) to generate correction data for other state variables.
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Abbreviations
The following abbreviations are used in this manuscript:

AD Autonomous Driving
ADAS Advanced Driver Assistance Systems
ADMA Automotive Dynamic Motion Analyzer
ANFIS Adaptive Neuro-Fuzzy Inference System
COG Course Over Ground
CoM Center of sprung Mass
CSV Comma-Separated Values
FEM Finite Element Method
IMU Inertial Measurement Unit
INSs Inertial Navigation Systems
LCP Local Car Plane
LTP Local Tangent Plane
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error



Sensors 2023, 23, 159 27 of 28

ML Machine Learning
MPE Mean Percentage Error
NLP Natural Language Processing
R&D Research and Development
RMSE Root Mean Squared Error
ROS Robotic Operating System
RTK Real-Time-Kinematic
OBD On-Board Diagnostics
POGs Predicted Occupancy Grids
SatNav Satellite Navigation
TNN Transformer Neural Network
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